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Isothermal-isobaric ensemble for small systems
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The application of the isothermal-isobaritl{P-T) ensemble to small systems is considered. In the small
system limit, which is currently gaining in scientific and technological significance, a volume scale must be
introduced in order to obtain a partition function that is dimensionless. The volume scale, however, must be
carefully chosen since it depends upon the nature of the boundary separating the system from the surroundings.
If the incorrect volume scale is used, the resultgP-T ensemble partition function will not rigorously
describe the small system of interest. Although volume scales become inconsequential in the thermodynamic
limit, care must be exercised in formulating the ensembles used to study small systems.
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[. INTRODUCTION volume of the cluster is then allowed to fluctuate against the
external pressure imposed by the surrounding vapor phase.
The isothermal-isobaric N-P-T) ensemble, when ap- As we discuss in the next section, the nature of the boundary
plied to small systems in which the volume is a continuousnfluences the final form of thé&l-P-T ensemble partition
variable, has recently been placed on a rigorous foundatiofunction for a small system. Since surface effects are negli-
[1,2]. Some of the arguments used in the reformulation, howgible for macroscopic systems, the properties of the bound-
ever, are still contested. Since these disagreements wesgy are of no concern in the thermodynamic limit.
brought to the attention of the authors after R¢ts2] were Determining the precise form of tH¢-P-T ensemble for
published, we revisit several issues concerning the applicasmall systems is not simply of academic interest. In this era
tion of the isothermal-isobaric ensemble to small systems. of nanophysics, the application of tié-P-T ensemble to
Choosing and properly formulating the statistical me-small systems may be desirable in various theoretical and
chanical ensemble most appropriate for describing variouexperimental situations. For example, an important consider-
small systems is particularly important in this era of nano-ation in several nanotechnological processes is the phenom-
technology. Small systems are strongly influenced by thena of nucleation. Recent work in the area of molecular
surrounding medium that serves as a temperature, pressutbeory of vapor phase nucleatipd—5| focused on determin-
or chemical potential reservoir. Beyond the effects of tem-ng the properties of the clusters that formed in a supercooled
perature, pressure, etc., the surrounding bath also influenceapor. An appropriately defined physical cluster enabled the
the small system via interfacial effects. vapor partition function to be evaluated exhaustively and
The choice of which ensemble to use, at least for smalhonredundantly. Although these authors were not explicitly
systems, is largely motivated by how the system is separatadterested in the constant pressure ensemble, the isothermal-
from its surroundings. In the thermodynamic limit, the isobaric ensemble partition function—the summing of vol-
choice of ensemble is a matter of convenience. For a smailme stategvolume fluctuations of a liquid dropletinder an
system, the chosen ensemble should conform to the situatiamposed external pressuféhe surrounding vapor phase
in which the system is found. The system of interest mayfollows naturally from their approach.
have a fixed volume or its volume may fluctuate against an Another possible application of thié-P-T ensemble to an
externally imposed pressure. In the case of a small systeimportant small system concerns the imposition of a fixed
that is appropriately described by tiNeP-T ensemble, the pair of forces acting at the chain ends of a single polymer
system will be immersed in some reservoir that imposes &hain of N monomers, i.e., the constant force ensemble. The
fixed external pressurén addition to a fixed external tem- constant force ensemble is the polymer counterpart of the
peraturg¢. How the surroundings “communicate” with the constant pressure ensembleNsparticle systems. Ensemble
system, i.e., how the external pressure is imposed on thaverages, in particular stress-strain curves, of small polymer
system, is of prime importance in determining the final formchains differ when the ends are held with a constant force or
of the N-P-T ensemble partition function. The external pres-are maintained at a fixed end-to-end distance, i.e., the con-
sure may be imposed via a physical boundary, or “wall,” stant length ensembighe N-particle counterpart is the con-
that is present between the system and surroundings. Thtant volume ensembleConsequently, the constant force
boundary sets the system volume and allows the system @nd constant length ensembles lead to distinct elasticity laws
fluctuate against the imposed pressure. In contrast, a physidd]. Advances in experimental techniques now allow for a
constraining wall may not be present, as would be the casgingle chain to be maintained at a fixed length or held with a
for the clusters that form during vapor phase nucleation. Foconstant force so that single chain mechanical or thermody-
this example, the boundary between the system and sunamic properties can be probgd]. The ability to compare
roundings is a mathematical construct, or constréiet, no  experimental results with theoretical predictions necessitates
additional degrees of freedom may be assigned to the bounthat the constant force, or constant pressure ensemble, for
ary), that enables one to define the volume of the cluster. Themall systems be placed on a rigorous foundation.
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Ensuring the proper formulation of the isothermal- sionless through division by some constant “quantum” of
isobaric ensemble will also impact current molecular simu-volume[13] denoted byl" in Eq. (3). Note that the original,
lation algorithms. Since most experimental observations arand formally correct, partition function in E@l) is dimen-
performed under conditions of constant pressure and tensionless. Therefore, E¢3), which approximates Eq1) via
perature, theN-P-T ensemble has been widely used inthe replacement of the summation by an integral, must also
Monte Carlo and molecular dynamics simulations. As inter-be dimensionless. Partition functions, which by definition are
est in small systems increases, current simulation methodsure numbergi.e., sums over statgsare related to thermo-
should be modified to ensure that the properties of smaltlynamic potentials via a logarithm and so should not have
systems are rigorously obtained. The required changes of ttdimensions. The constaht, however, cancels out when de-
Monte Carlo method in the isothermal-isobaric ensemblegermining the ensemble average of a given variable and so
will be the subject of a forthcoming publication. need not be specified. Even so, S4dK] showed in the

thermodynamic limit that
II. THE ISOTHERMAL-ISOBARIC ENSEMBLE

In the late 1950s, and again in the 1990s, questions were N=—. 4
raised concerning the degree of rigor underlying the formu-
lation of the isothermal-isobaric ensembig-11,1,3. The
constant pressure ensemble was first introduced by Gugge{h-
heim[12] who derived, largely based on analogy, the follow-
ing partition function

Although the volume scalE is unimportant for analytical

eories in the thermodynamic limit, concerns have been

raised about whether the above formlodfis valid for sys-

tems consideredotin the thermodynamic limif11,1,2. For

small systems, arguments have been put forth suggesting that

A=27 Q(N,V,T)exg{— PV/KT}, (1) T depends upon the system volume and therefore must be
v taken inside the integral in E¢3). The form of the proposed

where Q(N,V,T) is the canonical ensemble partition func- volume scale reduces to E@) in the thermodynamic limit,

tion for a system oN molecules confined to a voluméand but is a function of volume when the system is small. In this
having a temperatur€. In Eq. (1), P is the constant external €2 of nanophysics, in which small systems are attracting

pressure to which the system is subjected #&rig Boltz- greater attention, the choice of the proper formlois of

mann’s constant. The characteristic thermodynamic potentiflarticular interest.

for the N-P-T ensemble is the Gibbs free enei@yin which As we discuss in the next section, the final form of the
volume scald” is dependent upon the nature of the boundary

G=—-kTInA. 2 that separates the system from the surroundings. The bound-
ary serves to define the volume of the system and allows the
Although Eq.(1) is formally correct, Guggenheim never system to fluctuate against the external pressure imposed by
specified the set of values & over which the sum was to the surroundings. The properties and effect of the boundary,
proceed. In the thermodynamic limit, this omission is incon-however, must be determined precisely since they influence
sequential since almost any reasonable set of volumes withe exact form of the volume scale in E§). For example, if
do[13]. The lack of specification of the volumes over which a mass can be assigned to the boundary, or if the boundary
the sum extends is one of the unsatisfactory features of thiateracts with the system and surroundings, then these addi-
N-P-T ensemble. The success of tNeP-T ensemble, de- tional degrees of freedom must be taken into account. We
spite the failure to specify the set of volumes, is closelydemonstrate in the next section that if the boundary is a
connected to the properties of all partition functions in thephysical objecfi.e., has a mass and momentythe volume
thermodynamic limit. As the system becomes macroscopiscale is a constant and may remain outside of the integral in
in size, A can be represented by its maximum term, so inEg. (3). If, on the other hand, the boundary is merely a math-
essence one is dealing only with the canonical ensemblematical construct to aid in the specification of the system
[1,13]. Therefore, the role of the sum in E€l) is reduced volume (i.e., a constraint whose net effect is that no addi-
primarily to facilitate certain mathematical manipulations tional degrees of freedom have been introdycEcecomes
needed in the derivation of thermodynamic properties. dependent upon the system volume and must be placed in-
Since the volumes of most systems are regarded as coside the integral in Eq(3). In the thermodynamic limit, en-
tinuous variables, some authors have attempted to remowemble averages obtained in both cases are identical. When
the conceptual difficulty associated with the sum over arthe system is small, however, ensemble averages will differ.
unspecified set of discrete volumes by expresaings As noted earlier, the boundary separating the system from
the surroundings cannot be chosen arbitrarily, especially
when dealing with systems not in the thermodynamic limit,
and must conform to the actual physical situation in which
the system is found. Not assigning additional degrees of free-
The replacement of the sum in EQ) by an integral enables dom to the boundary is certainly appropriate for several
the inclusion of all volumes, but at the expense of generatingmall systems of interest, an example being the work on
a partition function that has the dimensions of volume. Con<luster formation and the molecular theory of vapor phase
sequently, this partition function must be rendered dimennucleation3—5]. What physical situations correspond to the

A=%J Q(N,V,T)exp{ — PV/KT}dV. 3)
\%
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boundary being a physical object are not readily apparent-n particles (bath and U, is the potential energy corre-
One example includes the circumstance in which the systersponding to the interaction between th@and N—n. In ad-
volume is defined by the position of a movable wall or pis-dition, the total volumeV/ can be divided into two terms: the
ton. Although cases like this may arise, whether they araolumeuv occupied by then particles and the volum¥—v
appropriate to the various small systems of inter@sy., enclosing theN—n particles of the bath.

clusters in a vapor, polymer chains in solution, nanopar- Since the volume occupied by theparticles is allowed to

ticles) remains to be seen. vary continuously, we need to specify the volume lying be-
tweenv andv +dv occupied by then particles such that the

IIl. THE ISOTHERMAL-ISOBARIC ENSEMBLE remainingN—n particles are outside of this volume. One
FOR A SMALL SYSTEM can define a partition functiolQy"dv, that accounts for all

. . , » ) the configurations of thé&l particles in whichN—n are out-
The isothermal-isobaric ensemble partition function ap-iqe of, +dy andn are inv +do. (In anticipation of later

propriate for.sm'all S.VSt.e”?S is derived in this sectiqn. Theresults, we letQ’dv represent a pure number, indicating
following derivation is similar to the one presented in Ref. that Q[ is a density of states.Thus, the probability,

[2], which in turn is related to the derivation of the small P 4o that th el . | b
system grand ensemble by Soto-Camposl. [14]. Soto- n(v)dv, that then particles occupy a given volume be-
tweenv andv+dv is given by

Camposet al. obtained an expression for the probability that

given a subvolume of size there will be exactly nmol- nudy
ecules inside. A very important consideration of their deri- P,(v)dv= N _ (7
vation is the surface interactions between molecules inside Q(N,V.T)

and outside ofy. One of the key characteristics of this work
is that the size of the subvolumeremains constant while

the number of particles inside fluctuates. In this paper, we
are interested in describing an ensemble in which an external f Qn'dv=Q(N,V,T). (8
pressure is imposed on the system. Since the system volume

is now allowed to fluctuate, we need to determine the probciearly Q’dv must be evaluated in such a way that the

ability that a fixed number of particleswill be enclosed by repeated counting of configurations is avoided wigf dv
a volumev (in the given derivation, the identity of the is integrated over all values of the volume

particles is allowed to vajy In the following analysis, our In the above analysis the boundary separatingntiper-
attention is restricted to volumes of spherpal shape. Thg '%cles from the bath is simply a mathematical constrice
sults are the same for other volumes of fixed symmetrica

h i h oundary is not a physical object to which a mass or momen-
shape(e.g., cubg but more complicated shapes need t0 ey, can e assigngtb aid in the specification of the system
considered separately.

! ) . volume v. Local fluctuations already occur spontaneously
Let us begin with a macroscopic system of voluMe \ihin the macroscopic system, and no local boundary is
contalmr_\gN particles mamtamt_—ed at a temperature The explicitly present within the systeif@xcept of course for the
system is in the therm(_)dynamlc limit such .thm’_’oo' M boundary that encloses the entire macroscopic system
— o0 andN/V = const. Without loss of generality, assume the

\ ; 4 . ~order to calculate the thermodynamic properties of the sub-
N particles are monatomian extension to systems with

: T X . system, however, we must introduce an effective potential
molecular orientation is straightforwardrhe canonical en- 44 is zero for the configurations that we wish to allow and
semble partition functior for this system is given by

infinite otherwise. The net result, though, is that no external
potential energy is introduced into the system. When we con-
f e BUNd7,- - -dry (5) _sider local volume fluctuat_ions _o_f a subsystem, we need to
v ' introduce a boundary that identifies the volume states of the
subsystem. The boundary, or effective potential, prevents the
where A is the de Broglie wavelengtiD) is the system di- surroundings from entering the volurneand then particles
mensionality,3=1/kT, anddr; denotes the volume element from leaving the volume. Since the boundary has no mass
for particlei. Uy is the total potential energy of thé par- ~ or momentum and was not present to begin with when the
ticles. The limits on the integral indicate that the particles argnacroscopic system was formed, its effects must not appear
to be integrated over the entire volurie in the final result.
Next, for a given configuration of the particles in Eq. At this point, a problem arises concerning the unique
(5), consider a subsystem of particles. The remainingy specification of theexactvolume of then particles[1,2]. To
—n particles will constitute the surrounding bath sinde illustrate this problem, turn to Fig. 1 that demonstrates how
>n. In general, and without the requirement of pairwise ad-two volumes of the same sizalways chosen to be spherital

SinceP,(v)dv must be normalized to unity, we find that

Q(N,V,T)=

N!APN

ditivity, one can separatd, into three terms, may enclose the same configuration rofparticles and be
surrounded by the same configurationNbf-n particles. As
Uy=Up+Upn_ptU,. (6) noted for Eqs(7) and (8), each configuration ofl particles

must correspond to onlgne specific volume statd# the n
U, is the mutual collective potential energy of th@articles  particles. Otherwise, the same configurationNofarticles
(system), Uy_, is the collective potential energy of tHié  will be counted more than once in E@).
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in Eq. (8). Eliminating the redundant counting of configura-
O O O O tions also leads to the specification of the volume stalas
@) we discuss later, the shell particle is the volume gcale
O ) The volume of the system is now uniquely defined via the
O @) O shell particle. In other words, the boundary separating the
O system from the surroundings is now attached to the degrees
O ) ) of freedom of the system. The boundary becomes in effect
@ O part of the system, but only because itimglistinguishable
O from the shell particle. Since the boundary was introduced as
O a mathematical construct needed to specify the various vol-
O ume states of the sytem, no additional degrees of freedom
beyond those already present should be assigned to the
boundary.

O o

FIG. 1. One particular configuration dfl particles enclosed o t h h ffective | L
within a total volumeV demonstrating how two subvolumésold ne may suggest, however, that an effective interaction is

circles of equal size may surround the sameparticles (shaded still introduced, unintentiqnally, _between the t_)oundary and
circles while keeping the positions of the all particles fixed. The e System(and surroundings Since then particles must
unshaded circles represent the surroundiingn particles that com-  rémain inside the system volume and the surroundings must
prise the bath. Each particle center is surrounded by an effectiv@main outside, an interaction arises between the boundary
diameter.(Adapted from Fig. 1 of Ref[2].) and the systemiand also the surroundingsin effect, we
have introduced additional degrees of freedom beyond those

To uniquely determine the volume occupied by thear-  already present in the system and surroundizgsl so the
ticles, one must first choose a particular pointMras the  boundary becomes equivalent to another paptioc®onse-
origin of the systengto avoid edge effects, this origin should quently, movement of the boundary, irrespective of changes
be sufficiently far from the walls of the macroscopic con- of the positions of the particles and the surroundings, gen-
tainen. Given a reference point, however, there are still severates a new and distinct configuration of the macroscopic
eral volumes centered at the origin that enclose the samgystem. The dotted spheres in Fig. 2 therefore correspond to
configuration ofn particles and are surrounded by the samedistinguishable volume states and cannot be considered re-
configuration ofN—n particles(see Fig. 2 The volumes dundant configurations.
shown in Fig. 2 cannot be counted as distinct volume states Nevertheless, all the boundary does is to select those con-
of the n-particle system. Otherwise, configurations of thefigurations in whichn molecules are confined ta The same
N-particle system will be counted redundantly in E8). nonuniform distribution,n in v andN—n in V—uv, would

The problem of overcounting, or redundancy, is resolvedstill be observed in th&\ particle system in one of its fluc-
by defining the volumes via a “shell” particle [1,2] (see tuated configurations. Thus, no degrees of freedom should be
Fig. 2), in which at least one of the particles resides in the attributed to the boundary. As stated previously, the boundary
shelldv that encapsulates the system volumeA new and is simply an effective potential that is either zero, for the
distinct state of theN-particle system is necessarily created configurations that we wish to allow, or infinite. The net
when the volume of the-particle system is varieivhether  result, though, is that no external potential energy is intro-
or not the configuration of the surroundimMd—n particles duced into the system, and so the effects of the boundary
change since the position of the shell particle changes asnust not appear in the final result.
well. Consequently, the inclusion of configurations of the Having found an unambiguous means of specifying the
particles common to larger values ofis explicitly avoided  volume of then-particle system, we defin@y’dv as[2]

N! 1
n,v = —B(UptU,) - —BUn-n R
QN v = (N N!ADNLUdﬁfHdUe dr, dT“fv_(Hdv)e A7 -7y

N! dv
= —B(UptU,) o —BUN- .
(n=D!(N—=n)! N!ADNLmUe A dTanV—(v+dv)e "dTineny AT ®

where patrticle 1 is the shell particle whose position is to besymmetrical shape of +dv, particle 1 can be integrated
integrated throughoutlv anddr,- - -d7qy are the coordi- separately throughout the shell, indicated by the inclusion of
nates of the remaininhl— 1 particles relative to the position dv in the second expression of E@). The binomial coef-

of particle 1(a process during which particle 1 is consideredficient accounts for the number of indistinguishable ways of
to be at a fixed position in the spherical shelDue to the arranging theN particles inton—1, N—n and the shell par-
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O

. shell particle

FIG. 2. One particular configuration dfi particles enclosed

within a total volumeV demonstrating how to uniquely defimme

specific volume statef n particles(shaded circlgs The unshaded
circles represent the surroundihg—n particles that comprise the

PHYSICAL REVIEW B4 016128

wherev +dv has been replaced hy, Q(N—n,V—v,T) is
the partition function ofN—n particles in a volume/—uv
and

| anernenan
V—v
<Q:,v>o:

: (13
f e AUn-n(d7)N "
V—-u

in which (- - -), denotes ensemble averaging over the con-
figurations of theN—n particles in V—uv. This allows
Q(N,V,T) to be rewritten as

\%
Q(N,V,T)ZJ'0 Q(N=Nn,V=0,T)(Qf ,)odv. (14

bath. Each particle center is surrounded by an effective diametelhe importance of the shell particle is demonstrated in the

The first step in determining the volume occupied byrhmarticles
is to choose a particular reference poinMras the originy,. Yet,
several volumegdashed circlescentered at still enclose then
particles and therefore include common configurations. &keect

volumev (bold circle of the n particles is defined by the presence

of ashell particle(dark shaded particlehat is farthest front, and

resides in the shelflv encapsulating. (Adapted from Fig. 1 of

Ref.[2].)

ticle (due to its fixed location in the shell, the shell particle is

now distinguishable from the remainimg- 1 particles. The

Appendix where the above integral is evaluated for an ideal
gas.

Now, P,(v)dv can be rewritten as

Q(N—N,V—0,T)Q7 ,)odv

P,(v)dv= ONV.T) (15)
One can show thdtl5,2]
QIN-NV—0T) _ 0, sy 16

Q(N,V,T)

secondN! in the denominator accounts for the indistinguish- _ _ _ _
ability of all theN particles. The interactiorld,, between the ~Where  is the chemical potential of the surroundings and
n andN—n particles have been included as part of the totaW(v) is the work required to form an empty cavity of size

potential energy of tha interior particles.

within the bath. Thus,

For notational convenience, we define a partition function

Qp.dv as

dv
* d =—f e*B(Un+UU) d nfl’ 10
Qo= A ), (d=" 19
where @7)" t=dr, --d7y,. Equation(10) is simply the
partition function of then particles inv+dv such that at

least one particle is in the sheall. In this expression the

configuration of theN—n particles outside o + dv is kept
fixed, i.e., the exterior particles are maintained ifr@zen
configuration The n particles are integrated throughout
+dv, still subject toU ., but the values o), are limited by
the fixed configuration of theN—n particles in V—(v
+dv).

Substituting Eq(10) into Eq. (9) yields

dv

n,v _ * —BUN=n N—
N dv —(N_n)!AD(Nn)JV(HdU)Qn,Ue N-n(d7)" ",
(13)

where @T)N*”=d7-1(n+l) ...d7y. The above expression

can be rewritten af2]

Qﬂ’”dv=Q(N—n,V—v,T)<Q:’U)Odv, (12

Pr(v)do =eMe PN Qh ) od. (17)
Utilizing the normalization condition of the probability den-
sity, and noting that exphyw) is independent of, we define
the small system isothermal-isobaric ensemble partition
function A as

A= f (Qr )oe Py, (18)

in which A=exp(—Bnu). The above partition function is
dimensionless, sincéQ;, ,),dv is a pure number, and does
not need to be divided by some volume scale. If the system
approaches macroscopic size, in whitlv) = Pv and inter-
actions between the system and surroundings become negli-

gible, then the isothermal-isobaric partition function reduces
to

A= f Q} e PPudv. (19
The importance of the shell particle in the above result is
also discussed for an ideal gas in the Appendix.

A volume scale is implicit in Eqs(18) and (19), having
been absorbed inside the integral via the use of the shell
particle, i.e., the shell particlis the volume scale. What has
emerged is a volume scale that depends omith a depen-
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degrees of freedom, uniquely defines the system volume.

. Vg ‘ O O (Note that the boundary, being equivalent to another particle,
O becomes in effect the shell partiglén this case, redundancy

is not a problem. When the boundary has a different location,

@) O O O O the physical state of the system must be different.
‘ O If the system is sufficiently large so that interactions be-
. O O tween the surroundings, the system and the boundary can be
ignored, the isothermal-isobaric partition function reduces to
FIG. 3. One particular configuration af particles (shaded _ 1 , _gp
circles contained within a volumeg. The volumevg is bounded A= A_é UBQn,B,Ue "dug. (21)

by fixed sides and also by a movahlend shadedboundary of

finite thickness. The unshaded circles represent the surrouiing Although redundancy is no longer an issue, we note that a
-n partit_:leg that comprise the bath. All of tieparticles are en- volume scale still appears in EQRY); the volijme scale is

closed within a total volum. now seen to be the cube of the de Broglie wavelength of the
boundary. Since the volume scale is a constant, it can be
taken outside of the integral, and therefore will not affect the

tsr:]:\/tvh?r?rgosc‘i’mnkasrn\;gllIJiSn?gl,gll)vesnir?geE&(eAf)\,/cljurr?wCeO\;i;?g:n calculation of ensemble averages. In general, the properties
y ) of the boundary that enter intQ) gz, will affect the en-

shell particle serves to eliminate possible states of the sys- bl &f th ¢ ! tin th d :
tem, the determination df follows naturally from the con- semble average € system IS not In thermodynamic

sideration of redundancy, and not from the requirement thalfm't)' so that the boundary cannot be (_:hos_en z_irbltrarlly and
a partition function must be dimensionlegéthough this re- must cqnform to the actual physical situation in which the
quirement must ultimately be satisfied as we®nly after system is found.

considering the elimination of redundant volume states is the

need for a shell particle, or volume scale, introduced. Con- IV. CONCLUSION

sequently, the partition function, which is given by an inte-

dence that vanishes in the thermodynamic liftit (one can

The form of the volume scale that appears in the
isothermal-isobaric ensemble partition function for small
nystems is dependent upon the properties of the boundary
that separates the system from the surroundings. When no
degrees of freedom may be assigned to the boundary, the
volume scale becomes equivalent to the shell partiate
m herefore remain inside the integral over th ropri
tion in yvhich the boundary o:f is a physical pbject that can volﬁ:r:eitilt%s? o?thz systse)?:/\/thgn ttheeg tin?ngarty ?Sa;) Ehoyp;i_ate
be assigned a mass and, if desirable, an internal moleculgg gpject with a given mass or momentum, the volume scale
structure. The boundary is now distinguishable from the s 5 constant, independent of the system volume. The exact
particles and the surroundings and may be allowed to interachyq ification of the volume scale is inconsequential in the
with then molecules inv via a potential that does more than thermodynamic limit, where the volume scale has an entirely
simply limit these molecules to. This case is illustrated in negligible effect on the thermodynamic properties of macro-
Fig. 3 in which the system volume is no longer spherical. scopic systems computed with the aid of tNeP-T en-

Now that the boundary acts as a real wall separating thggmple. We emphasize that in the present era in which nano-
system from its surroundings, the degrees of freedom of thgj;eq systems are of practical importance, volume scales
boundary must be taken into account. The canonical e€nz5nnot be ignored, and appropridteP-T ensembles must

semble partition function of the-particle system may be o jeveloped with a care that includes the actual nature of
expressed aQ, g ,dvg whereB indicates the boundary and o system and its surroundings.

dvg is the volum_e element within which the center of mass |, closing this paper, we note that there is an interesting
of the boundary is located. The boundary is now treated as Barallel between the current formulation of theP-T en-
particle, different from the remainingparticles. The bound-  sempje partition function for small systems and the so-called
ary will give rise to a momentum partition functidwhere  «gpjacement free energy” controversy that lasted for al-
Ag is the de Broglie wavelength of the boundgttyat can be 45t 30 years in connection with the phenomenological clas-

arguments, we refer the reader to the cited refereft@s
We conclude this section by moving to a somewhat dif-

ferent systembut one that is still immersed in a bath that

supplies an external pressuP@. We now consider a situa-

extracted fromQ, g, SO that we can write sical theory of nucleatiofil7,18,4. The “replacement free
energy” controversy deals with the correct treatment of the
dug ; ; : ;
Q5. dvg=0Q (20) separation of the internal and translational degrees of free
= n.B.u Ag ' dom of the clusters that participate in nucleation. In the cur-

rent paper, the introduction of the shell particle followed
where Q[ g , is that part ofQ, g, that remains when the directly from the elimination of redundant configurations as
momentum partition function of the boundary is extractedthe volume of the system is varied continuously. Likewise,
from Q, 5, - One of then particles is no longer required to the replacement free energy factor follows directly from the
be a shell particle since the boundary, which has its owrelimination of redundant configurations of the cluster upon
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translation of its bounding surfa¢d]. A recent controversy which, in addition to having units of volume, is not the cor-
over the “mapping” of localized fluctuations onto a macro- rect result for the ideal gas.

system[19-22, related to the development of theories of The importance of the shell particle can also be seen if the
nucleation, also shares a similar solution. Given the probabilN-P-T ensemble partition function is evaluated for the ideal
ity of appearance of a fluctuation in a small cell, how is thatgas. SinceU,=0 and W(v)=Puv for the ideal gasA is
result to be “mapped” onto the macrosystem in order togiven by Eq.(19) in which
specify the equilibrium number of such fluctuations in that

system? The answer again involves the removal of redundant

configurations to ensure that the mapping is rigorously per—A: JVQ* o FPugy — f@ v
formed[22]. o < 0 (N—1)IAD"

n—-1 AD n
—BPuv —
e (BP>

(A6)
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JdlnA
APPENDIX: THE IDEAL GAS (v)=- kT( P )ﬁ n, (A7)

For the ideal gaslJ ,=0, so that

n—1 where(v) is the ensemble average of the system volume, we

(Qn)0=Qhu= (a1)  find using Eq.(A6) that

(n—1)I AP
and P{v)=nkT. (A8)
(V=) " . .
Q(N—Nn,V—v,T)= OEGR (A2) If the shell particle were not used to define the system vol-
(N=nm)!A ume, theN-P-T partition function would instead be equal to
Substituting the above expressions into Bdl), we find that
[23] Vv . Un ADn
A=J’ Qn Uefﬁpvdv=j 5 e PPvdy = —_—.
Vo (Vop)Nn pn-1 o o nlAPP (BP)"*
N,V,T)= d A9
A ) fo(N—n)!AD(N_”) (n—1)IAP" A9
VN The equation of state that follows from this partition function
= (A3)
NI APN IS
which is equal to the canonical ensemble partition function P(v)=(n+1)kT. (A10)

of the ideal gas.

If the system volume were not defined via the shell par-
ticle, so that all of then particles were allowed to sample the The yse of a+1) or n is clearly inconsequential in the
entire volumev, then then-particle partition function, now  thermodynamic limit. Yet, the difference between EGsS)

denoted byQ, ,, would be given by and (A10) is significant when the system is sufficiently
small.
_ v" (A4) In general, the ensemble averages calculated within dif-
an”_n!ADn' ferent ensembles will not be the same for small systems. In

contrast, ensemble averages are independent of the particular
The above expression, when substituted into (£4), yields ~ €nsemble chosen to evaluate them when the system is in the

[23] thermodynamic limit. One exception, however, is the ideal
gas. Due to the absence of interparticle interactions, identical
Vo (V—p)NTn o" results should be obtained within all ensembles and for all

Q(N,V,T)=J S(N-T) Dndv system sizes. Hence, the small systdaP-T partition func-

0 (N—=n)!A ntA tion of the ideal gas should yield E¢A8), and not Eq.

YN+ (A10), as the correct equation of state for any valuenof
= (A5) [compare Eq(A8) to the equation of state obtained using the

(N+1)1APN canonical ensemble which predicts th&)v =nkT].

016128-7



DAVID S. CORTI

[1] G.J.M. Koper and H. Reiss, J. Phys. Cheti0, 422 (1996.

[2] D.S. Corti and G. Soto-Campos, J. Chem. PHy38 7959
(1998.

[3] P. Schaaf, B. Senger, and H. Reiss, J. Phys. Cherh0B
8740(1997).

[4] H. Reiss, W.K. Kegel, and J.L. Katz, J. Phys. Chem1@2,
8548(1998.

[5] B. Senger, P. Schaaf, D.S. Corti, R. Bowles, J.-C. Voegel, and

H. Reiss, J. Chem. Phy§10 6421(1999.

[6] J.T. Titantah, C. Pierleoni, and J.-P. Ryckaert, Phys. Rev.

60, 7010(1999.

[7] S.B. Smith, L. Finzi, and C. Bustamante, Scier®&s, 1122
(1992.

[8] W.B. Brown, Mol. Phys.1, 68 (1959.

[9] A. Munster, Mol. Phys2, 1 (1959.

[10] R.A. Sack, Mol. Phys2, 8 (1959.

[11] P. Attard, J. Chem. Phy403 9884(1995.

PHYSICAL REVIEW E 64 016128

[12] E.A. Guggenheim, J. Chem. Phys.103(1939.

[13] T.L. Hill, Statistical Mechanic¢Dover, New York, 198Y.

[14] G. Soto-Campos, D.S. Corti, and H. Reiss, J. Chem. Pl0&.
2563(1998.

[15] H. Reiss and G.A. Merry, J. Phys. Chefb, 3313(1981).

[16] D.S. Corti(unpublished

[17] J. Lothe and G.M.J. Pound, iNucleation edited by A.C.

Zettlemoyer(Marcel Dekker, New York, 1969

I%18] H. Reiss, J.L. Katz, and E.R. Cohen, J. Chem. PAgs5553

(1968.
[19] H. Reiss, J. Mol. Struct485-486 465 (1999.
[20] R.K. Bowles, J. Chem. Phy412, 1122(2000.
[21] H. Reiss and R.K. Bowles, J. Chem. Ph$%2, 1390(2000.
[22] H. Reiss and R.K. Bowles, J. Chem. Ph$%3 8615(2000.
[23] I.S. Gradshteyn and |I.M. Ryzhiklable of Integrals, Series,
and ProductgAcademic Press, New York, 1980

016128-8



