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Isothermal-isobaric ensemble for small systems

David S. Corti
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-1283

~Received 1 March 2001; published 26 June 2001!

The application of the isothermal-isobaric (N-P-T) ensemble to small systems is considered. In the small
system limit, which is currently gaining in scientific and technological significance, a volume scale must be
introduced in order to obtain a partition function that is dimensionless. The volume scale, however, must be
carefully chosen since it depends upon the nature of the boundary separating the system from the surroundings.
If the incorrect volume scale is used, the resultingN-P-T ensemble partition function will not rigorously
describe the small system of interest. Although volume scales become inconsequential in the thermodynamic
limit, care must be exercised in formulating the ensembles used to study small systems.
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I. INTRODUCTION

The isothermal-isobaric (N-P-T) ensemble, when ap
plied to small systems in which the volume is a continuo
variable, has recently been placed on a rigorous founda
@1,2#. Some of the arguments used in the reformulation, ho
ever, are still contested. Since these disagreements
brought to the attention of the authors after Refs.@1,2# were
published, we revisit several issues concerning the app
tion of the isothermal-isobaric ensemble to small system

Choosing and properly formulating the statistical m
chanical ensemble most appropriate for describing vari
small systems is particularly important in this era of nan
technology. Small systems are strongly influenced by
surrounding medium that serves as a temperature, pres
or chemical potential reservoir. Beyond the effects of te
perature, pressure, etc., the surrounding bath also influe
the small system via interfacial effects.

The choice of which ensemble to use, at least for sm
systems, is largely motivated by how the system is separ
from its surroundings. In the thermodynamic limit, th
choice of ensemble is a matter of convenience. For a sm
system, the chosen ensemble should conform to the situa
in which the system is found. The system of interest m
have a fixed volume or its volume may fluctuate against
externally imposed pressure. In the case of a small sys
that is appropriately described by theN-P-T ensemble, the
system will be immersed in some reservoir that impose
fixed external pressure~in addition to a fixed external tem
perature!. How the surroundings ‘‘communicate’’ with th
system, i.e., how the external pressure is imposed on
system, is of prime importance in determining the final fo
of theN-P-T ensemble partition function. The external pre
sure may be imposed via a physical boundary, or ‘‘wal
that is present between the system and surroundings.
boundary sets the system volume and allows the system
fluctuate against the imposed pressure. In contrast, a phy
constraining wall may not be present, as would be the c
for the clusters that form during vapor phase nucleation.
this example, the boundary between the system and
roundings is a mathematical construct, or constraint~i.e., no
additional degrees of freedom may be assigned to the bo
ary!, that enables one to define the volume of the cluster.
1063-651X/2001/64~1!/016128~8!/$20.00 64 0161
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volume of the cluster is then allowed to fluctuate against
external pressure imposed by the surrounding vapor ph
As we discuss in the next section, the nature of the bound
influences the final form of theN-P-T ensemble partition
function for a small system. Since surface effects are ne
gible for macroscopic systems, the properties of the bou
ary are of no concern in the thermodynamic limit.

Determining the precise form of theN-P-T ensemble for
small systems is not simply of academic interest. In this
of nanophysics, the application of theN-P-T ensemble to
small systems may be desirable in various theoretical
experimental situations. For example, an important consid
ation in several nanotechnological processes is the phen
ena of nucleation. Recent work in the area of molecu
theory of vapor phase nucleation@3–5# focused on determin-
ing the properties of the clusters that formed in a supercoo
vapor. An appropriately defined physical cluster enabled
vapor partition function to be evaluated exhaustively a
nonredundantly. Although these authors were not explic
interested in the constant pressure ensemble, the isother
isobaric ensemble partition function—the summing of v
ume states~volume fluctuations of a liquid droplet! under an
imposed external pressure~the surrounding vapor phase!—
follows naturally from their approach.

Another possible application of theN-P-T ensemble to an
important small system concerns the imposition of a fix
pair of forces acting at the chain ends of a single polym
chain ofN monomers, i.e., the constant force ensemble. T
constant force ensemble is the polymer counterpart of
constant pressure ensemble ofN-particle systems. Ensembl
averages, in particular stress-strain curves, of small poly
chains differ when the ends are held with a constant force
are maintained at a fixed end-to-end distance, i.e., the c
stant length ensemble~the N-particle counterpart is the con
stant volume ensemble!. Consequently, the constant forc
and constant length ensembles lead to distinct elasticity l
@6#. Advances in experimental techniques now allow for
single chain to be maintained at a fixed length or held wit
constant force so that single chain mechanical or thermo
namic properties can be probed@7#. The ability to compare
experimental results with theoretical predictions necessit
that the constant force, or constant pressure ensemble
small systems be placed on a rigorous foundation.
©2001 The American Physical Society28-1
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DAVID S. CORTI PHYSICAL REVIEW E 64 016128
Ensuring the proper formulation of the isotherma
isobaric ensemble will also impact current molecular sim
lation algorithms. Since most experimental observations
performed under conditions of constant pressure and t
perature, theN-P-T ensemble has been widely used
Monte Carlo and molecular dynamics simulations. As int
est in small systems increases, current simulation meth
should be modified to ensure that the properties of sm
systems are rigorously obtained. The required changes o
Monte Carlo method in the isothermal-isobaric ensem
will be the subject of a forthcoming publication.

II. THE ISOTHERMAL-ISOBARIC ENSEMBLE

In the late 1950s, and again in the 1990s, questions w
raised concerning the degree of rigor underlying the form
lation of the isothermal-isobaric ensemble@8–11,1,2#. The
constant pressure ensemble was first introduced by Gug
heim@12# who derived, largely based on analogy, the follo
ing partition function

D5(
V

Q~N,V,T!exp$2PV/kT%, ~1!

whereQ(N,V,T) is the canonical ensemble partition fun
tion for a system ofN molecules confined to a volumeV and
having a temperatureT. In Eq. ~1!, P is the constant externa
pressure to which the system is subjected andk is Boltz-
mann’s constant. The characteristic thermodynamic poten
for theN-P-T ensemble is the Gibbs free energyG in which

G52kT ln D. ~2!

Although Eq.~1! is formally correct, Guggenheim neve
specified the set of values ofV over which the sum was to
proceed. In the thermodynamic limit, this omission is inco
sequential since almost any reasonable set of volumes
do @13#. The lack of specification of the volumes over whic
the sum extends is one of the unsatisfactory features of
N-P-T ensemble. The success of theN-P-T ensemble, de-
spite the failure to specify the set of volumes, is clos
connected to the properties of all partition functions in t
thermodynamic limit. As the system becomes macrosco
in size, D can be represented by its maximum term, so
essence one is dealing only with the canonical ensem
@1,13#. Therefore, the role of the sum in Eq.~1! is reduced
primarily to facilitate certain mathematical manipulatio
needed in the derivation of thermodynamic properties.

Since the volumes of most systems are regarded as
tinuous variables, some authors have attempted to rem
the conceptual difficulty associated with the sum over
unspecified set of discrete volumes by expressingD as

D5
1

GEV
Q~N,V,T!exp$2PV/kT%dV. ~3!

The replacement of the sum in Eq.~1! by an integral enables
the inclusion of all volumes, but at the expense of genera
a partition function that has the dimensions of volume. C
sequently, this partition function must be rendered dim
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sionless through division by some constant ‘‘quantum’’
volume@13# denoted byG in Eq. ~3!. Note that the original,
and formally correct, partition function in Eq.~1! is dimen-
sionless. Therefore, Eq.~3!, which approximates Eq.~1! via
the replacement of the summation by an integral, must a
be dimensionless. Partition functions, which by definition a
pure numbers~i.e., sums over states!, are related to thermo
dynamic potentials via a logarithm and so should not ha
dimensions. The constantG, however, cancels out when de
termining the ensemble average of a given variable and
need not be specified. Even so, Sack@10# showed in the
thermodynamic limit that

G5
kT

P
. ~4!

Although the volume scaleG is unimportant for analytical
theories in the thermodynamic limit, concerns have be
raised about whether the above form ofG is valid for sys-
tems considerednot in the thermodynamic limit@11,1,2#. For
small systems, arguments have been put forth suggesting
G depends upon the system volume and therefore mus
taken inside the integral in Eq.~3!. The form of the proposed
volume scale reduces to Eq.~4! in the thermodynamic limit,
but is a function of volume when the system is small. In th
era of nanophysics, in which small systems are attrac
greater attention, the choice of the proper form ofG is of
particular interest.

As we discuss in the next section, the final form of t
volume scaleG is dependent upon the nature of the bound
that separates the system from the surroundings. The bo
ary serves to define the volume of the system and allows
system to fluctuate against the external pressure impose
the surroundings. The properties and effect of the bound
however, must be determined precisely since they influe
the exact form of the volume scale in Eq.~3!. For example, if
a mass can be assigned to the boundary, or if the boun
interacts with the system and surroundings, then these a
tional degrees of freedom must be taken into account.
demonstrate in the next section that if the boundary i
physical object~i.e., has a mass and momentum!, the volume
scale is a constant and may remain outside of the integra
Eq. ~3!. If, on the other hand, the boundary is merely a ma
ematical construct to aid in the specification of the syst
volume ~i.e., a constraint whose net effect is that no ad
tional degrees of freedom have been introduced!, G becomes
dependent upon the system volume and must be placed
side the integral in Eq.~3!. In the thermodynamic limit, en-
semble averages obtained in both cases are identical. W
the system is small, however, ensemble averages will di

As noted earlier, the boundary separating the system f
the surroundings cannot be chosen arbitrarily, especi
when dealing with systems not in the thermodynamic lim
and must conform to the actual physical situation in wh
the system is found. Not assigning additional degrees of fr
dom to the boundary is certainly appropriate for seve
small systems of interest, an example being the work
cluster formation and the molecular theory of vapor pha
nucleation@3–5#. What physical situations correspond to th
8-2
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ISOTHERMAL-ISOBARIC ENSEMBLE FOR SMALL SYSTEMS PHYSICAL REVIEW E64 016128
boundary being a physical object are not readily appar
One example includes the circumstance in which the sys
volume is defined by the position of a movable wall or p
ton. Although cases like this may arise, whether they
appropriate to the various small systems of interest~e.g.,
clusters in a vapor, polymer chains in solution, nanop
ticles! remains to be seen.

III. THE ISOTHERMAL-ISOBARIC ENSEMBLE
FOR A SMALL SYSTEM

The isothermal-isobaric ensemble partition function a
propriate for small systems is derived in this section. T
following derivation is similar to the one presented in R
@2#, which in turn is related to the derivation of the sma
system grand ensemble by Soto-Camposet al. @14#. Soto-
Camposet al. obtained an expression for the probability th
given a subvolume of sizev there will be exactly nmol-
ecules inside. A very important consideration of their de
vation is the surface interactions between molecules in
and outside ofv. One of the key characteristics of this wo
is that the size of the subvolumev remains constant while
the number of particles insidev fluctuates. In this paper, w
are interested in describing an ensemble in which an exte
pressure is imposed on the system. Since the system vo
is now allowed to fluctuate, we need to determine the pr
ability that a fixed number of particlesn will be enclosed by
a volumev ~in the given derivation, the identity of then
particles is allowed to vary!. In the following analysis, our
attention is restricted to volumes of spherical shape. The
sults are the same for other volumes of fixed symmetr
shape~e.g., cube! but more complicated shapes need to
considered separately.

Let us begin with a macroscopic system of volumeV
containingN particles maintained at a temperatureT. The
system is in the thermodynamic limit such that,N→`, V
→` andN/V5const. Without loss of generality, assume t
N particles are monatomic~an extension to systems wit
molecular orientation is straightforward!. The canonical en-
semble partition functionQ for this system is given by

Q~N,V,T!5
1

N!LDNEV
e2bUNdt1•••dtN , ~5!

whereL is the de Broglie wavelength,D is the system di-
mensionality,b51/kT, anddt i denotes the volume elemen
for particle i. UN is the total potential energy of theN par-
ticles. The limits on the integral indicate that the particles
to be integrated over the entire volumeV.

Next, for a given configuration of theN particles in Eq.
~5!, consider a subsystem ofn particles. The remainingN
2n particles will constitute the surrounding bath sinceN
@n. In general, and without the requirement of pairwise a
ditivity, one can separateUN into three terms,

UN5Un1UN2n1Us . ~6!

Un is the mutual collective potential energy of then particles
~system!, UN2n is the collective potential energy of theN
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2n particles ~bath! and Us is the potential energy corre
sponding to the interaction between then andN2n. In ad-
dition, the total volumeV can be divided into two terms: th
volumev occupied by then particles and the volumeV2v
enclosing theN2n particles of the bath.

Since the volume occupied by then particles is allowed to
vary continuously, we need to specify the volume lying b
tweenv andv1dv occupied by then particles such that the
remainingN2n particles are outside of this volume. On
can define a partition function,QN

n,vdv, that accounts for all
the configurations of theN particles in whichN2n are out-
side of v1dv and n are in v1dv. ~In anticipation of later
results, we letQN

n,vdv represent a pure number, indicatin
that QN

n,v is a density of states.! Thus, the probability,
Pn(v)dv, that then particles occupy a given volume be
tweenv andv1dv is given by

Pn~v !dv5
QN

n,vdv

Q~N,V,T!
. ~7!

SincePn(v)dv must be normalized to unity, we find that

E QN
n,vdv5Q~N,V,T!. ~8!

Clearly QN
n,vdv must be evaluated in such a way that t

repeated counting of configurations is avoided whenQN
n,vdv

is integrated over all values of the volumev.
In the above analysis the boundary separating then par-

ticles from the bath is simply a mathematical construct~the
boundary is not a physical object to which a mass or mom
tum can be assigned! to aid in the specification of the system
volume v. Local fluctuations already occur spontaneou
within the macroscopic system, and no local boundary
explicitly present within the system~except of course for the
boundary that encloses the entire macroscopic system!. In
order to calculate the thermodynamic properties of the s
system, however, we must introduce an effective poten
that is zero for the configurations that we wish to allow a
infinite otherwise. The net result, though, is that no exter
potential energy is introduced into the system. When we c
sider local volume fluctuations of a subsystem, we need
introduce a boundary that identifies the volume states of
subsystem. The boundary, or effective potential, prevents
surroundings from entering the volumev and then particles
from leaving the volumev. Since the boundary has no ma
or momentum and was not present to begin with when
macroscopic system was formed, its effects must not app
in the final result.

At this point, a problem arises concerning the uniq
specification of theexactvolume of then particles@1,2#. To
illustrate this problem, turn to Fig. 1 that demonstrates h
two volumes of the same size~always chosen to be spherica!
may enclose the same configuration ofn particles and be
surrounded by the same configuration ofN2n particles. As
noted for Eqs.~7! and ~8!, each configuration ofN particles
must correspond to onlyone specific volume stateof the n
particles. Otherwise, the same configuration ofN particles
will be counted more than once in Eq.~8!.
8-3
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DAVID S. CORTI PHYSICAL REVIEW E 64 016128
To uniquely determine the volume occupied by then par-
ticles, one must first choose a particular point inV as the
origin of the system~to avoid edge effects, this origin shou
be sufficiently far from the walls of the macroscopic co
tainer!. Given a reference point, however, there are still s
eral volumes centered at the origin that enclose the s
configuration ofn particles and are surrounded by the sa
configuration ofN2n particles ~see Fig. 2!. The volumes
shown in Fig. 2 cannot be counted as distinct volume sta
of the n-particle system. Otherwise, configurations of t
N-particle system will be counted redundantly in Eq.~8!.

The problem of overcounting, or redundancy, is resolv
by defining the volumev via a ‘‘shell’’ particle @1,2# ~see
Fig. 2!, in which at least one of then particles resides in the
shell dv that encapsulates the system volumev. A new and
distinct state of theN-particle system is necessarily creat
when the volume of then-particle system is varied~whether
or not the configuration of the surroundingN2n particles
changes!, since the position of the shell particle changes
well. Consequently, the inclusion of configurations of then
particles common to larger values ofv is explicitly avoided

FIG. 1. One particular configuration ofN particles enclosed
within a total volumeV demonstrating how two subvolumes~bold
circles! of equal size may surround the samen particles~shaded
circles! while keeping the positions of the allN particles fixed. The
unshaded circles represent the surroundingN2n particles that com-
prise the bath. Each particle center is surrounded by an effec
diameter.~Adapted from Fig. 1 of Ref.@2#.!
b

n
ed

01612
-
e

e

es

d

s

in Eq. ~8!. Eliminating the redundant counting of configur
tions also leads to the specification of the volume scaleG ~as
we discuss later, the shell particle is the volume scale!.

The volume of the system is now uniquely defined via t
shell particle. In other words, the boundary separating
system from the surroundings is now attached to the deg
of freedom of the system. The boundary becomes in ef
part of the system, but only because it isindistinguishable
from the shell particle. Since the boundary was introduced
a mathematical construct needed to specify the various
ume states of the sytem, no additional degrees of freed
beyond those already present should be assigned to
boundary.

One may suggest, however, that an effective interactio
still introduced, unintentionally, between the boundary a
the system~and surroundings!. Since then particles must
remain inside the system volume and the surroundings m
remain outside, an interaction arises between the boun
and the system~and also the surroundings!. In effect, we
have introduced additional degrees of freedom beyond th
already present in the system and surroundings~and so the
boundary becomes equivalent to another particle!. Conse-
quently, movement of the boundary, irrespective of chan
of the positions of then particles and the surroundings, ge
erates a new and distinct configuration of the macrosco
system. The dotted spheres in Fig. 2 therefore correspon
distinguishable volume states and cannot be considered
dundant configurations.

Nevertheless, all the boundary does is to select those
figurations in whichn molecules are confined tov. The same
nonuniform distribution,n in v and N2n in V2v, would
still be observed in theN particle system in one of its fluc
tuated configurations. Thus, no degrees of freedom shoul
attributed to the boundary. As stated previously, the bound
is simply an effective potential that is either zero, for t
configurations that we wish to allow, or infinite. The n
result, though, is that no external potential energy is int
duced into the system, and so the effects of the bound
must not appear in the final result.

Having found an unambiguous means of specifying
volume of then-particle system, we defineQN

n,vdv as @2#

ve
QN
n,vdv5

N!

~n21!! ~N2n!!

1

N!LDNEdv
dt1E

v1dv
e2b(Un1Us)dt2•••dtnE

V2(v1dv)
e2bUN2ndtn11•••dtN

5
N!

~n21!! ~N2n!!

dv

N!LDNEv1dv
e2b(Un1Us)dt12•••dt1nE

V2(v1dv)
e2bUN2ndt1(n11)•••dt1N , ~9!
d
of

of
where particle 1 is the shell particle whose position is to
integrated throughoutdv and dt12•••dt1N are the coordi-
nates of the remainingN21 particles relative to the positio
of particle 1~a process during which particle 1 is consider
to be at a fixed position in the spherical shell!. Due to the
esymmetrical shape ofv1dv, particle 1 can be integrate
separately throughout the shell, indicated by the inclusion
dv in the second expression of Eq.~9!. The binomial coef-
ficient accounts for the number of indistinguishable ways
arranging theN particles inton21, N2n and the shell par-
8-4
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ISOTHERMAL-ISOBARIC ENSEMBLE FOR SMALL SYSTEMS PHYSICAL REVIEW E64 016128
ticle ~due to its fixed location in the shell, the shell particle
now distinguishable from the remainingn21 particles!. The
secondN! in the denominator accounts for the indistinguis
ability of all theN particles. The interactionsUs between the
n andN2n particles have been included as part of the to
potential energy of then interior particles.

For notational convenience, we define a partition funct
Qn,v* dv as

Qn,v* dv5
dv

~n21!!LDnEv1dv
e2b(Un1Us)~dt!n21, ~10!

where (dt)n215dt12•••dt1n . Equation~10! is simply the
partition function of then particles inv1dv such that at
least one particle is in the shelldv. In this expression the
configuration of theN2n particles outside ofv1dv is kept
fixed, i.e., the exterior particles are maintained in afrozen
configuration. The n particles are integrated throughoutv
1dv, still subject toUs , but the values ofUs are limited by
the fixed configuration of theN2n particles in V2(v
1dv).

Substituting Eq.~10! into Eq. ~9! yields

QN
n,vdv5

dv

~N2n!!LD(N2n)EV2(v1dv)
Qn,v* e2bUN2n~dt!N2n,

~11!

where (dt)N2n5dt1(n11) . . . dt1N . The above expressio
can be rewritten as@2#

QN
n,vdv5Q~N2n,V2v,T!^Qn,v* &odv, ~12!

FIG. 2. One particular configuration ofN particles enclosed
within a total volumeV demonstrating how to uniquely defineone
specific volume stateof n particles~shaded circles!. The unshaded
circles represent the surroundingN2n particles that comprise the
bath. Each particle center is surrounded by an effective diam
The first step in determining the volume occupied by then particles
is to choose a particular reference point inV as the origin,r 0. Yet,
several volumes~dashed circles! centered atr 0 still enclose then
particles and therefore include common configurations. Theexact
volumev ~bold circle! of the n particles is defined by the presenc
of a shell particle~dark shaded particle! that is farthest fromr 0 and
resides in the shelldv encapsulatingv. ~Adapted from Fig. 1 of
Ref. @2#.!
01612
l

n

wherev1dv has been replaced byv, Q(N2n,V2v,T) is
the partition function ofN2n particles in a volumeV2v
and

^Qn,v* &o5

E
V2v

Qn,v* e2bUN2n~dt!N2n

E
V2v

e2bUN2n~dt!N2n

, ~13!

in which ^•••&o denotes ensemble averaging over the c
figurations of theN2n particles in V2v. This allows
Q(N,V,T) to be rewritten as

Q~N,V,T!5E
0

V

Q~N2n,V2v,T!^Qn,v* &odv. ~14!

The importance of the shell particle is demonstrated in
Appendix where the above integral is evaluated for an id
gas.

Now, Pn(v)dv can be rewritten as

Pn~v !dv5
Q~N2n,V2v,T!^Qn,v* &odv

Q~N,V,T!
. ~15!

One can show that@15,2#

Q~N2n,V2v,T!

Q~N,V,T!
5ebnme2bW(v), ~16!

wherem is the chemical potential of the surroundings a
W(v) is the work required to form an empty cavity of sizev
within the bath. Thus,

Pn~v !dv5ebnme2bW(v)^Qn,v* &odv. ~17!

Utilizing the normalization condition of the probability den
sity, and noting that exp(bnm) is independent ofv, we define
the small system isothermal-isobaric ensemble partit
function D as

D5E ^Qn,v* &oe2bW(v)dv, ~18!

in which D5exp(2bnm). The above partition function is
dimensionless, sincêQn,v* &odv is a pure number, and doe
not need to be divided by some volume scale. If the sys
approaches macroscopic size, in whichW(v)5Pv and inter-
actions between the system and surroundings become n
gible, then the isothermal-isobaric partition function reduc
to

D5E Qn,v* e2bPvdv. ~19!

The importance of the shell particle in the above result
also discussed for an ideal gas in the Appendix.

A volume scale is implicit in Eqs.~18! and ~19!, having
been absorbed inside the integral via the use of the s
particle, i.e., the shell particleis the volume scale. What ha
emerged is a volume scale that depends onv with a depen-

r.
8-5
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DAVID S. CORTI PHYSICAL REVIEW E 64 016128
dence that vanishes in the thermodynamic limit@1# ~one can
show that Sack’s value ofG, given by Eq.~4!, is recovered in
the thermodynamic limit@16#!. Since the volume scale~or
shell particle! serves to eliminate possible states of the s
tem, the determination ofG follows naturally from the con-
sideration of redundancy, and not from the requirement
a partition function must be dimensionless~although this re-
quirement must ultimately be satisfied as well!. Only after
considering the elimination of redundant volume states is
need for a shell particle, or volume scale, introduced. C
sequently, the partition function, which is given by an in
gral over volumes specified by the shell particle, is now
mensionless. For a more detailed discussion of the ab
arguments, we refer the reader to the cited references@1,2#.

We conclude this section by moving to a somewhat d
ferent system~but one that is still immersed in a bath th
supplies an external pressureP). We now consider a situa
tion in which the boundary ofv is a physical object that ca
be assigned a mass and, if desirable, an internal molec
structure. The boundary is now distinguishable from then
particles and the surroundings and may be allowed to inte
with then molecules inv via a potential that does more tha
simply limit these molecules tov. This case is illustrated in
Fig. 3 in which the system volume is no longer spherical

Now that the boundary acts as a real wall separating
system from its surroundings, the degrees of freedom of
boundary must be taken into account. The canonical
semble partition function of then-particle system may be
expressed asQn,B,vdvB whereB indicates the boundary an
dvB is the volume element within which the center of ma
of the boundary is located. The boundary is now treated
particle, different from the remainingn particles. The bound-
ary will give rise to a momentum partition function~where
LB is the de Broglie wavelength of the boundary! that can be
extracted fromQn,B,v so that we can write

Qn,B,vdvB5Qn,B,v8
dvB

LB
3

, ~20!

where Qn,B,v8 is that part ofQn,B,v that remains when the
momentum partition function of the boundary is extract
from Qn,B,v . One of then particles is no longer required t
be a shell particle since the boundary, which has its o

FIG. 3. One particular configuration ofn particles ~shaded
circles! contained within a volumevB . The volumevB is bounded
by fixed sides and also by a movable~and shaded! boundary of
finite thickness. The unshaded circles represent the surroundinN
2n particles that comprise the bath. All of theN particles are en-
closed within a total volumeV.
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degrees of freedom, uniquely defines the system volu
~Note that the boundary, being equivalent to another parti
becomes in effect the shell particle.! In this case, redundanc
is not a problem. When the boundary has a different locat
the physical state of the system must be different.

If the system is sufficiently large so that interactions b
tween the surroundings, the system and the boundary ca
ignored, the isothermal-isobaric partition function reduces

D5
1

LB
3EvB

Qn,B,v8 e2bPvdvB . ~21!

Although redundancy is no longer an issue, we note tha
volume scale still appears in Eq.~21!; the volume scale is
now seen to be the cube of the de Broglie wavelength of
boundary. Since the volume scale is a constant, it can
taken outside of the integral, and therefore will not affect t
calculation of ensemble averages. In general, the prope
of the boundary that enter intoQn,B,v8 will affect the en-
semble averages~if the system is not in thermodynami
limit !, so that the boundary cannot be chosen arbitrarily a
must conform to the actual physical situation in which t
system is found.

IV. CONCLUSION

The form of the volume scale that appears in t
isothermal-isobaric ensemble partition function for sm
systems is dependent upon the properties of the boun
that separates the system from the surroundings. When
degrees of freedom may be assigned to the boundary,
volume scale becomes equivalent to the shell particle~and
must therefore remain inside the integral over the appropr
volume states of the system!. When the boundary is a phys
cal object with a given mass or momentum, the volume sc
is a constant, independent of the system volume. The e
specification of the volume scale is inconsequential in
thermodynamic limit, where the volume scale has an entir
negligible effect on the thermodynamic properties of mac
scopic systems computed with the aid of theN-P-T en-
semble. We emphasize that in the present era in which na
sized systems are of practical importance, volume sc
cannot be ignored, and appropriateN-P-T ensembles mus
be developed with a care that includes the actual natur
the system and its surroundings.

In closing this paper, we note that there is an interest
parallel between the current formulation of theN-P-T en-
semble partition function for small systems and the so-ca
‘‘replacement free energy’’ controversy that lasted for
most 30 years in connection with the phenomenological c
sical theory of nucleation@17,18,4#. The ‘‘replacement free
energy’’ controversy deals with the correct treatment of
separation of the internal and translational degrees of f
dom of the clusters that participate in nucleation. In the c
rent paper, the introduction of the shell particle followe
directly from the elimination of redundant configurations
the volume of the system is varied continuously. Likewis
the replacement free energy factor follows directly from t
elimination of redundant configurations of the cluster up
8-6
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translation of its bounding surface@4#. A recent controversy
over the ‘‘mapping’’ of localized fluctuations onto a macr
system@19–22#, related to the development of theories
nucleation, also shares a similar solution. Given the proba
ity of appearance of a fluctuation in a small cell, how is th
result to be ‘‘mapped’’ onto the macrosystem in order
specify the equilibrium number of such fluctuations in th
system? The answer again involves the removal of redun
configurations to ensure that the mapping is rigorously p
formed @22#.
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APPENDIX: THE IDEAL GAS

For the ideal gas,Us50, so that

^Qn,v* &o5Qn,v* 5
vn21

~n21!!LDn
, ~A1!

and

Q~N2n,V2v,T!5
~V2v !N2n

~N2n!!LD(N2n)
. ~A2!

Substituting the above expressions into Eq.~14!, we find that
@23#

Q~N,V,T!5E
0

V ~V2v !N2n

~N2n!!LD(N2n)

vn21

~n21!!LDn
dv

5
VN

N!LDN
, ~A3!

which is equal to the canonical ensemble partition funct
of the ideal gas.

If the system volume were not defined via the shell p
ticle, so that all of then particles were allowed to sample th
entire volumev, then then-particle partition function, now
denoted byQn,v , would be given by

Qn,v5
vn

n!LDn
. ~A4!

The above expression, when substituted into Eq.~14!, yields
@23#

Q~N,V,T!5E
0

V ~V2v !N2n

~N2n!!LD(N2n)

vn

n!LDn
dv

5
VN11

~N11!!LDN
, ~A5!
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which, in addition to having units of volume, is not the co
rect result for the ideal gas.

The importance of the shell particle can also be seen if
N-P-T ensemble partition function is evaluated for the ide
gas. SinceUs50 and W(v)5Pv for the ideal gas,D is
given by Eq.~19! in which

D5E
0

V

Qn,v* e2bPvdv5E
0

` vn21

~n21!!LDn
e2bPvdv5S LD

bPD n

.

~A6!

Since the volumeV is of macroscopic size, we have letV
→` in the upper bound of the integral. Noting that@13#

^v&52kTS ] ln D

]P D
b,n

, ~A7!

where^v& is the ensemble average of the system volume,
find using Eq.~A6! that

P^v&5nkT. ~A8!

If the shell particle were not used to define the system v
ume, theN-P-T partition function would instead be equal t

D5E
0

V

Qn,ve2bPvdv5E
0

` vn

n!LDn
e2bPvdv5

LDn

~bP!n11
.

~A9!

The equation of state that follows from this partition functio
is

P^v&5~n11!kT. ~A10!

The use of (n11) or n is clearly inconsequential in the
thermodynamic limit. Yet, the difference between Eqs.~A8!
and ~A10! is significant when the system is sufficient
small.

In general, the ensemble averages calculated within
ferent ensembles will not be the same for small systems
contrast, ensemble averages are independent of the parti
ensemble chosen to evaluate them when the system is in
thermodynamic limit. One exception, however, is the ide
gas. Due to the absence of interparticle interactions, iden
results should be obtained within all ensembles and for
system sizes. Hence, the small systemN-P-T partition func-
tion of the ideal gas should yield Eq.~A8!, and not Eq.
~A10!, as the correct equation of state for any value on
@compare Eq.~A8! to the equation of state obtained using t
canonical ensemble which predicts that^P&v5nkT#.
8-7
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